R Programming: Advanced Analytics In R For Data Science
R Programming: Advanced Analytics In R For Data Science, Take Your R & R Studio Skills To The Next Level. Data Analytics, Data Science, Statistical Analysis in Business, GGPlot2
Created by Kirill Eremenko, SuperDataScience Team, English, English, French [Auto]
PREVIEW THIS COURSE - GET COUPON CODE
What you'll learn
Perform Data Preparation in R
Identify missing records in dataframes
Locate missing data in your dataframes
Apply the Median Imputation method to replace missing records
Apply the Factual Analysis method to replace missing records
Understand how to use the which() function
Know how to reset the dataframe index
Work with the gsub() and sub() functions for replacing strings
Explain why NA is a third type of logical constant
Deal with date-times in R
Convert date-times into POSIXct time format
Create, use, append, modify, rename, access and subset Lists in R
Understand when to use [] and when to use [[]] or the $ sign when working with Lists
Create a timeseries plot in R
Understand how the Apply family of functions works
Recreate an apply statement with a for() loop
Use apply() when working with matrices
Use lapply() and sapply() when working with lists and vectors
Add your own functions into apply statements
Nest apply(), lapply() and sapply() functions within each other
Use the which.max() and which.min() functions

Post a Comment for " R Programming: Advanced Analytics In R For Data Science"